Self learning guide for machine learning
Learn graphing and visualization in Python
Matplotlib is the workhorse of python visualization. It is old but widely used.
Seaborn library aims to give pretty graphs and high level APIs.
After completing the exercises below, you should be comfortable with
★☆☆ - Easy
★★☆ - Medium
★★★ - Challenging
★★★★ - Bonus
bills = [50,30,60,40,65,20,10,15,25,35]
tips= [12,7,13,8,15,5,2,2,3,4]
a = [22, 25, 30, 35, 40, 42, 45, 50, 55, 60, 65, 70]
month revenue
Jan 10
Feb 12
Mar 7
Apr 15
May 17
Gender percentage
M 52
F 40
Unknown 8
Download pokemon data
Read it like this:
pokemon = pd.read_csv('https://s3.amazonaws.com/elephantscale-public/data/pokemon/pokemon-small.csv', index_col=0)
with pd.option_context("display.width", 150):
print (pokemon)
Data looks like this:
Name Type 1 Type 2 Total HP Attack Defense Sp. Atk Sp. Def Speed Stage Legendary
#
1 Bulbasaur Grass Poison 318 45 49 49 65 65 45 1 False
2 Ivysaur Grass Poison 405 60 62 63 80 80 60 2 False
3 Venusaur Grass Poison 525 80 82 83 100 100 80 3 False
4 Charmander Fire NaN 309 39 52 43 60 50 65 1 False
5 Charmeleon Fire NaN 405 58 64 58 80 65 80 2 False
.. ... ... ... ... ... ... ... ... ... ... ... ...
147 Dratini Dragon NaN 300 41 64 45 50 50 50 1 False
148 Dragonair Dragon NaN 420 61 84 65 70 70 70 2 False
149 Dragonite Dragon Flying 600 91 134 95 100 100 80 3 False
150 Mewtwo Psychic NaN 680 106 110 90 154 90 130 1 True
151 Mew Psychic NaN 600 100 100 100 100 100 100 1 False
Try the following graphs:
EX-1A - Do a graph to illustrate how many type-1 Pokemons
Hint: histogram
EX-1B - Illustrate Attack
points per Type-1
in a boxplot
Hint: You may need to find the average attack points per type first
Ex-1C - Come up with a graph to explain this data. Experiment